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Noninvasive control of stochastic resonance
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External feedback can enhance~or depress! the response of a noisy bistable system to monochromatic
signals, significantly magnifying its natural stochastic resonance. We compare and contrast a variety of such
feedback strategies, using both numerical simulations and analog electronic experiments. These noninvasive
control techniques are especially valuable for noisy bistable systems that are difficult or impossible to modify
internally.
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I. INTRODUCTION

Stochastic resonance~SR! is a nonlinear phenomenon th
exploits background noise to enhance a system’s respon
a monochromatic signal@1#. Originally proposed as a poten
tial mechanism for the occurrence of the terrestrial ice ag
SR has since been demonstrated in diverse experiments
volving physical, chemical, and biological systems@2#. Re-
cently, Gammaitoniet al. @3# were able tocontrol SR, so as
to either suppress or enhance the output power at the s
frequency, by sinusoidally modulating the barrier height b
tween the two wells of a bistable system. Unfortunately,
many systems of interest, such as neurons@4#, it is difficult
or impossible to modulate the relevant barrier~or threshold!.
Subsequently, Masonet al. @5# were able to enhance SR b
adding external feedback that increases the likelihood
switching between states, thereby obviating the need
modify the system internally. Adopting a different approac
Rozenfeld, Neiman, and Schimansky-Geier@6# were able to
enhance SR by superimposing dichotomic noise on the in
nal ~background! broadband noise.

Here, we study a variety of external feedback techniq
that modify SR and compare and contrast their strengths
weaknesses. In Sec. II, we review bistable SR and the g
eral framework for our feedback and numerical techniqu
In Sec. III, we examine various fixed amplitude binary fee
back techniques, each of which can significantly enha
SR. We construct an analog electrical circuit to study one
these cases. In Sec. IV, we demonstrate that negative pro
tional feedback can also significantly boost SR. In Sec.
we consider the effect of employing pulses of fixed durati
Although such pulses can increase the spectral power a
signal frequency, they actually depress SR. Section VI p
vides a theoretical framework to understand the enhancem
mechanism, the effective reduction in the height of the
tential barrier. Finally, in Sec. VII, we summarize our r
sults.

II. FRAMEWORK

A. Controlled noisy bistable oscillator

The canonical example of SR involves a sinusoida
driven overdamped noisy bistable oscillator. Consequen
consider an oscillator evolving according to
1063-651X/2001/63~4!/041107~8!/$20.00 63 0411
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mẍ1g ẋ52V8@x#1FN@ t#, ~1!

where the prime denotes differentiation with respect to po
tion and the overdots differentiation with respect to tim
The oscillator’s internal~background! noise engenders a sto
chastic forceFN@ t#5sN@ t#, where N@ t# represents band
limited Gaussian white noise with zero mean and unit ro
mean-square amplitude. The potentialV@x#52 1

2 ax2

1 1
4 bx4 is bistable provideda,b.0. The choicesa532 and

b51 establish a barrier of heightVB5a2/4b5256, of half
width ~or radius! RB5Aa/b55.66, and of maximum gradi
ent ~or maximum force! FB5A4a3/27b569.7. These pa-
rameters are used in our simulations. Because the regim
classical SR is overdamping, where viscosity dominates
ertia g ẋ@mẍ, we simplify the analysis by takingg51 and
m50.

To enhance the response of the oscillator described by
~1! to monochromatic signals, we modify the system by ad
ing a feedback controllerFC@x#, dependingimplicitly on
time, so that

mẍ1g ẋ52V8@x#1FN@ t#1FC@x#52Veff8 @x#1FN@ t#,
~2!

where the effective potentialVeff
• 5V2xFC . The goal of most

of the feedback techniques presented here will be to ef
tively lower the barrier height of the potential.

Finally, to the modified system Eq.~2!, noisy oscillator
plus controller, we add a monochromatic signalFS@ t#
5AS sin@2pfSt#, so that

mẍ1g ẋ52Veff8 @x#1FN@ t#1FS@ t#. ~3!

A weak signal amplitudeAS50.11FB58 guarantees that th
deterministic dynamics is typically subthreshold in the a
sence of the controller. Since signal amplitudes ofAS>FB
effectively rock the potential so that its interwell barrier p
riodically disappears, the maximum forceFB is also known
as the deterministic switching threshold, defined here stri
for dc or extremely slow modulating signals. For fast
modulations, however,FB still provides a reasonable ap
proximation to the deterministic switching threshold.
©2001 The American Physical Society07-1
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B. Numerical techniques

We numerically integrate the stochastic differential E
~3! using a first-order technique@7# with a time stepDt
5TS/210'0.005, whereTS51/f S . We generate Gaussia
noise using the Box-Muller algorithm@6# and a pseudo-
random-number generator. The finite time step slightly c
relates the noise by introducing an effective correlation ti
of t5Dt/2 and band-limits its spectrum to a Nyquist fr
quency f N5(1/2)Dt529f S'100. The noise intensityD
5ts2 is the product of the correlation time and the varian

From a long time seriesx@ t#, we estimate the mea
square amplitude per frequency, the power spectral den
or spectrumS@ f #. Each spectrum consists of the magnitu
squared of a normalized discrete Fourier transform@8#. To
reduce the variance of the result, we typically average10

spectra each containing 25 periods of the signal. Sometime
we first filter the time series so as to remove intrawell os
lation and focus on interwell hopping.~Specifically, before
applying a fast Fourier transform algorithm to the time s
ries, we replace everyx,0 with 21 and everyx.0 with
11.!

From a spectrum, we estimate the spectral response to
monochromatic signal by computing the dimensionless r
r5S@ f S#/S̄0 , whereS@ f S# is the spectrum at the signal fre
quency f S ~or the height of the spectral bin of widthD f

centered onf S!, andS̄0 is the average of the spectrum ne
but not at the signal frequencyf S . This is conventionally
expressed in decibels by the signal-to-noise ratio~SNR! R
510 log10r. This simple SNR definition@9# is appropriate
because we want to quantify the response of the modi
system Eq.~2!, the controlled oscillator, to amonochromatic
signal FS@ t#. BecauseS@ f S# depends implicitly on the fre-
quency resolution of the spectrum, we are careful to main
a constant bin widthD f 5 f S/25 throughout this study.

Figure 1 provides an example spectrum and SNR plot
an uncontrolled bistable oscillator. The spectrum consist
a sharp peak at the signal frequency superimposed o
smooth background@12#. ~The slight rise in the high-
frequency tail of the spectrum is an unavoidable aliasing
tifact @8#.! The SNR plot exhibits a local maximum at mo
erate noise, the signature of SR.

III. FIXED AMPLITUDE FEEDBACK

A. Binary pulses

We first review the enhancement technique of Mas
et al. @5#. Perhaps the simplest choice of controlling fee
back with binary pulses so that

FC@x#52ACx/uxu ~4!

If the oscillator is on the left side of the barrier, the control
pushes it to the rightFC@x,0#51AC , and, if the oscillator
is on the right side, the controller pushes it to the leftFC@x
.0#52AC . This effectively rocks the potential back an
forth ~nonperiodically! so as to encourage the oscillator
hop the central barrier. Indeed, the pulsed oscillator move
an effective potentialVeff5V2xFC with a lower barrier
04110
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height.~Interestingly, this effective potential is now tristabl
with a cusp stable point at the origin.!

Figure 2 ~top! displays the SNR versus internal~back-
ground! noise mean square amplitudes2, for a series of
pulse amplitudesAC . For low noise, there is only intrawel
motion, which a filter eliminates, and the SNR vanishes. F
moderate noises, each SNR exhibits a prominent local m
mum, the signature of classical SR. Small to moderate p
amplitudesAC&FB cause the local maxima to drift to lowe
noises and higher values, culminating in a nearly 10 dB
hancement over the unpulsed SR.~Notice that the SNR in-
creases at the location of the uncontrolled SR as well.! Very
large pulse amplitudesAC@FB destroy the SR by renderin

FIG. 1. Typical spectrum and SR plots for an uncontroll
bistable oscillator. Each spectrumS@ f # consists of a sharp peak a
the signal frequencyf S superimposed on a smooth backgroun
Each SNR, exhibits a local maximum at the resonant noise, whe
the output is filtered~quantized! or unfiltered. The bistable potentia
has a barrier of heightVB5256, radiusRB55.66, and hence maxi
mum forceFB569.7. The signal has frequency 1/TS5 f S50.195
and amplitudeAS50.11FB58.
7-2
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NONINVASIVE CONTROL OF STOCHASTIC RESONANCE PHYSICAL REVIEW E63 041107
the interwell barrier insignificant and the potential effective
monostable, so that each SNR decreases monotonically
noise.

Figure 2~bottom! displays the peak signal-to-noise rat
SNRL as a function of pulse amplitude. Small to modera
pulse amplitudesAC&FB cooperate with the internal~back-
ground! noise and with the signal to increase the SNR, an
pulse amplitude comparable to the maximum force provid
by the potentialAC;FB maximizes the SNR. Slightly large
pulse amplitudesAC*FB degrade the SNR by stimulatin
the oscillator to hop the interwell barrier irrespective of t
phase of the signal.

B. Binary hysteresis pulses

We experimented with adding a hysteretic threshold to
pulses to reduce the ‘‘chatter’’ in their application. Spec

FIG. 2. Binary feedback enhances SR. Increasing the pulse
plitudes lowers the effective height and shifts the SR peak to lo
noises and higher values. A pulse amplitudeAC;FB enhances the
SR by about 10 dB. The dashed line on the bottom plot indicates
modest additional benefit of a small hysteresis threshold.
04110
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cally, if FC51AC and the oscillatorincreasesthrough x
51RC.0, then the controller resetsFC52AC ; con-
versely, if FC52AC and the oscillatordecreasesthrough
x52RC,0, the controller resetsFC51AC . Adding a
small hysteretic thresholdRC50.1RB improved the SR en-
hancement slightly~by an additional;2 dB!. However,
larger thresholds did not yield further improvements. T
dashed line in Fig. 2~bottom! summarizes these results.

C. Binary windowed pulses

We also experimented with adding a window outsi
which the pulses could be turned off. Triggered on by ent
ing the interval~or window! @2RC ,1RC# from one side of
the barrier, these pulses are shut off upon exiting the inte
from the other side. This scheme might provide ‘‘relief
from the feedback for a sensitive system, such as a neu
The tradeoff is that, the larger the window, the longer t
pulses are on, and the better the enhancement; conver
the smaller the window, the less the pulses are on, and
worse the enhancement. As the radius of the window
creases to zeroRC→0, we recover the SNR of the uncon
trolled bistable oscillator. Figure 3 summarizes these resu

D. Analog experiment

We observed pulse enhanced SR experimentally in
analog electronic circuit for the binary hysteresis pulses
Sec. III B. Specifically, we constructed a circuit of passi
elements~resistors, capacitors! and active elements~opera-
tional amplifiers or ‘‘op amps’’!, whose voltage as a functio
of time mimics the position of the controlled sinusoidal
driven noisy oscillator.

Figure 4 is a schematic of the circuit. The op amps w
negative resistive feedback act as summing inverting am
fiers. The op amp with the negative capacitive feedback a
as an integrator. The op amp with positive feedback acts
Schmitt trigger and implements the threshold hystere
Commercial wave generators supply the noise and sig
Kirchhoff’s laws provide a differential equation for the vol
ageV@ tE#,

RC
dV

dtE
5

R0

R1
V2

R0

R2
m2S RA

RB
11DV32

R0

R3
VN@ tE#

2
R0

R4
VS@ tE#2VP@ tE#, ~5!

where, in addition to the resistancesRX and the capacitance
C, m is the proportionality constant of the multiplier inte
grated circuit, andtE is the scaled time. Adjusting these p
rameters allows the amplitude dynamics to be scaled to
the dynamic range of the discrete components while s
allowing a direct comparison between simulation and exp
ment.

Figure 5 illustrates the experimental setup. The data
quisition ~DAQ! system consists of a personal compu
~PC! with a National Instruments PCI-MIO DAQ card an
an AT-GPIB/NT general purpose interface bus~GPIB! card.
A typical maximum sampling rate for the DAQ system
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JOHN F. LINDNERet al. PHYSICAL REVIEW E 63 041107
100/N kHz, whereN is the number of recorded channe
The primary software package isLABVIEW 5.1, which is ca-
pable of controlling both the function generators, via t
GPIB, as well as the DAQ card. This system can easily
tomate repetitive and lengthy measurements.

The primary job of the DAQ system is to make repea
time series measurements for a variety of parameter sett
The time series measurements are made at 32 768 Hz.
filter is set to low-pass the driving noise to 10 kHz. Th
ensures that the fastest frequency of the system is slo
than the DAQ system’s Nyquist frequency, which in th
case is 16 384 Hz. Power spectra are calculated using the
Fourier transform~FFT! algorithm. Because the period of th
time series measurement and the period of the input
quency are commensurate, no windowing function is app
to the time series prior to the FFT. For each measuremen
the SNR, 1000 power spectra are averaged. From the ave
output power spectrum the signal power at the driving f

FIG. 3. Windowed binary feedback enhances SR, even w
‘‘working’’ part time. However, there is a tradeoff between ‘‘tim
on’’ and the degree of enhancement.
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quency is measured and the background noise level is
tracted using a curve fitting routine. The experimentally m
sured value of the SNR isS/D f N, whereSandD f N are the
peak signal and background noise values, extracted from
power spectrum. The bandwidth is given byD f 5 f s /Ns ,
wheref s is the time series sampling frequency andNs is the
number of samples.

Figure 6 summarizes the experimental results. As the
plitude of the pulses increases, the SR moves to lower
quencies and higher values. This is in good qualitative ag
ment with the simulations.

IV. NEGATIVE PROPORTIONAL FEEDBACK

Another simple choice of controlling feedback is the r
storing force

FC@x#52kCx. ~6!

Because the mechanical force, derived from the true po
tial, is 2V8@x#5ax2bx3, this feedback effectively renor
malizes the potential’s linear parameterã5a2kC . Conse-
quently, the relative height of the barrierVB /RB5Aã3/16b
vanishes asã→0, or equivalently asa→kC . The vanishing
of the barrier induces a sharp rise in the SR peak, until
local maximum in the SNR disappears nearkC;a. Unfor-
tunately, the SR peak also shifts toward lower noise, mak
it difficult to exploit the large SNR in the ambient noise
real environments. Figure 7 summarizes these results.~This
strategy suggests yet another scheme, feeding back acubic
restoring force to linearize the effective potential.!

V. CONSTANT DURATION PULSES

Another possible control strategy is to apply fixed amp
tude pulses of fixed duration. Triggered by a threshold cro
ing, such pulses automatically turn off after a fixed tim
Specifically, if the oscillator enters the interval@2RC ,
1RC# from x,2RC , the controller adds a forceFC5
1AC for a timeTC . Conversely, if the oscillator enters from
1RC,x, the controller addsFC52AC for a timeTC . Note
that duration of the pulsesTC is also a ‘‘refractory period;’’
successive pulses are not allowed to overlap, even if
oscillator wanders in and out of the interval multiple time

Constant duration control pulses~a near square wave pa
tern! introduce an extra frequency scale into the proble
namely, the inverse of the pulse duration. The correspond
power spectra now display a more complex sequence o
terrelated peaks and dips, occurring at frequenciesm fS
6n fC ~m,n integers! @10,11#. For the case of a weak signa
dips appear in the spectrumS@ f # at the harmonics of the
controller frequencyf C , as can be seen in the inset to Fig.
~bottom!. The durationTC controls the location of the main
spectral peak. AdjustingTC so that the peak coincides wit
the signal frequencyf S creates a local maximum inS@ f S# but
actually depresses the SR, as shown in Fig. 8. Since the
power is~approximately, under weak low-frequency driving!
conserved in a bistable system@12#, as power is increased in
f C(AC /FB→1), one expects a renormalization and con

n
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FIG. 4. Analog electronic circuit diagram tha
realizes binary feedback enhanced SR. The
amp with capacitive feedback acts as an integ
tor and the one with positive resistive feedba
acts like a Schmitt trigger, while those with neg
tive resistive feedback act as inverters, amplifie
and an adder. The dotted box contains the co
troller, whose output is always6AC .
r
ri

in

th

. A
r
tial
quent decrease in power in the area under the peak fof S
@13#. This is particularly pronounced in the current scena
since the control signal is not a pure tone.

VI. THEORY

The essential mechanism of noninvasive control of SR
the effective reduction in the height of the barrier separat

FIG. 5. Experimental data acquisition and control system for
analog circuit of Fig. 4.
04110
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FIG. 6. Pulse enhanced SR in an analog electronic circuit
pulse amplitudeAC50.6FB shifts the circuit’s SR peak to lowe
noises and higher values. The circuit mimics a bistable poten
characterized byVB5128,RB55.66, and henceFB534.8, while its
signal is determined byf S50.195 andAS50.29FB510.
7-5
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the two wells of the bistable potential. Although the effecti
potentialVeff5V2xFC is not simple~for example, it contains
a cusp for the binary pulses of Sec. III A!, we may employ
the McNamara-Wiesenfeld theory of bistable SR@12# to es-
timate the shift and rise of the SR peak with increasing pu
amplitude and decreasing effective barrier height.

If the signal is not too strong or too fast, then the me
time to hop the barrier can be approximated by Krame
formula @14#, which we write as

tK;p&
gRB

2

VB
expFgVB

D G . ~7!

Substituting this into the resonant conditiontK;2TS , we
solve for the resonant~or ‘‘peak’’ ! noise strength

FIG. 7. Negative proportional feedback enhances SR until
SNR local maximum disappears askC→a. However, as the maxi-
mum SNR increases, it shifts to lower noise, making it more di
cult to achieve in real, noisy environments.
04110
e
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DL;
2VBg

loge@~&/p!~VBTS /RB
2g!#

. ~8!

Similarly, if the signal is not too strong, then the spect
responser511r /D f , where the ratior is given by the
McNamara-Wiesenfeld formula@12#

r;&
gAS

2VB

D2 expF2
gVB

D G . ~9!

Substituting the resonant noise strengthDL given by Eq.~7!,
the resonant ratior L becomes

r L;p
AS

2RB
2

VB
2TS

logeF&p VBTS

gRB
2 G2

~10!

and so the resonant signal-to-noise ratio is SNL

510 log10rL510 log10@11r L /D f #.
Finally, we plot$sL

2 ,SNRL% parametrically as a function
of the barrier height~or well depth! VB . This theoretical
result, which is indicated by the plot of Fig. 9, is in goo
agreement with the simulations. Notably, within its range
validity, it predicts that reducing the barrier causes the re

e

-

FIG. 8. Constant duration pulses can increase the spectru
the signal frequencyS@ f S#, if the duration is tuned appropriately, s
that the fundamental spectral peak due to the approximate sq
waves of the pulses coincides with the signal frequency. Howe
this fundamental peak ‘‘swallows’’ the signal peak anddepresses
the SR. Inset depicts a typical spectrumS@ f #.
7-6



e.

d-
n
an
im

of
o-
th
c

y

f
y
d
e
p

ue
ith
ys

a
ld
iz

ble
Of-
up-
ful

e
ve

en-
olu-

NONINVASIVE CONTROL OF STOCHASTIC RESONANCE PHYSICAL REVIEW E63 041107
nant SNR~the SR local maximum! to move to lower noise
and higher values. Qualitatively, this behavior is plausibl

VII. CONCLUSION

An experimentalist can exploit a variety of simple fee
back strategies to magnify a bistable stochastic resona
Figure 10 graphically compares the strategies of SR enh
ing controllers. Although the feedback depends on real-t
monitoring of the time series, their structure~for example,
AC;FB for the binary pulses! depends only on the shape
the potential~and not at all on the frequency of the mon
chromatic signal!, and hence may be determined before
experiment begins. Furthermore, these noninvasive te
niques require only the application ofexternalforces, rather
than theinternal modification of the potential, even as the
effectively depress the interwell barrier.

Although these strategies have been developed
bistable SR, we expect that similar techniques can appl
threshold SR. Clearly, some modifications will be require
and the magnitude of the enhancement may differ. For
ample, since negative proportional feedback exploits the s
cific functional form of the bistable potential, this techniq
would obviously not have the same effect in a potential w
a different analytical form or in a nonpotential threshold s
tem, such as a neuron. However, insofar as neurons
bistable ‘‘on-off’’ systems, our general framework shou
apply. We hope to investigate such interesting general
tions in the near future.

FIG. 9. Theory indicates that the SR peak should increas
value and shift to lower noise as the barrier height is progressi
reduced.
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